%wﬁ»‘?xk%uam

The Chinese University of Hong Kong, Shenzhen

CSC6052/DDA6307/MDS6002:
Large Language Model

Lecture 3: Word Representation and Language Modeling

Spring 2024
Benyou Wang
School of Data Science

Recap

Y/ Y/
% 0

Y/
%®

What is linguistics?
Linguistic structure
> Character

> Word

> Sentence

> Discourse (&)

More about desturcture and scaling

> Inductive bias

> Inductive bias in NLP during many decades
> Rethinking Empiricism vs. Rationalism

(Next) From linguistics to computing linguistics

How modern NN perceives structure

1 Bag of words
3 Word sequencg\ Transformer: bag-of-words models with position embeddings
1 Injected structure

1 syntax or dependency tree(Recursive NN)

1 with local connections (Convolution NN)

1 with a recurrent bias (Recurrent NN)

Structure is learned in a data-driven way thanks to free attention.

For NLP

e Building blocks e Building strategies
o Words/subwords/tokens o Neural network
o Pre-trained objective
m Language modeling

Part 1:

Understanding Words from the
perspective of Information retrieval

Application 1: How to find a book in library?

Application 2: How to search?

Indian Restaurants in Shenzhen

nsn'sQ;‘Cv”:Tu 15 results match your filters Clear all filters Sortby: Relevance ®

Indian X

EUTIAN DISTRICT
LEL E i i s
Google — Map data 2024 We found great results, but some are outside Shenzhen. Showing results in neighboring cities.

Limit search to Shenzhen.

Establishment Type v 1. Bollywood Cafe

@OO®@O 155 cvicvs - Closed Now

[Restaurants
Indian, Asian - $$-$$$

[Coffee & Tea

“The food was authentic and delicious. The staff spoke English and Chinese and...”

Meals v N
‘Amaze’

[Breakfast
[Brunch
[Lunch

[Dinner

2. Indian Spice Restaurant
Q@OOOO 50 cvicws - Closed Now
Indian, Asian - $$-$$$

Price v

[Cheap Eats

[Mid-range

“I have attended the housewarming BBQ buffet at the new location of Indian
Spice...”

“Memorable Indian Experience”

Traveler rating v

0 ®@e00 &uwp

3. Bombay Adda Vegetarian Cuisine
QOO®®® 19 cvicws - Closed Now

Indian, Pizza - $

O e @O up

4
BOMBAY ADDA
Cuisines v

-QJW
M indian
[Chinese
[J Cantonese

“Awesomee food! Must visit place for indian food in shenzhen! Indian ambience...”

“Never missed India ™

https://www.tripadvisor.com/Restaurants-g297415-c24-Shenzhen_Guangdong.html

Application 3: talk to your personal assistant

First, we need to know how to represent words

A simple practice: term matching

e Find books with Al in the title

Inteligencia s
Artificial. Artificial
Fundamentos matematicos, I ntel I ig e nce
algoritmicos y metodologicos With pyt hon

ligent apps using Python 3.x

,? -

¥ X

Eloy Vicente Cestero e aanchies Packt>
Alfonso Mateos Caballero rateek oSy

Have the word or not?

Artificial
Intelligence
Basics

Apress

Which book I1s more relevant?

Inteligencia e
Artificial. Artificial

L]
Fundamentos matematicos, I ntel I Igence
algoritmicos y metodologicos WIt h pyt ho n
ve

ling
3.

hon 3.x

Artificial
Intelligence
Basics

Eloy Vicente Cestero
Alfonso Mateos Caballero - Apress

Which one do you prefer if all book have “Al” in their titles

Vector Space Model:

Representation:

Documents and queries are represented as vectors in some space.
-- What are the dimensions?
-- How to map documents and queries to this space?

Scoring Function:
Rank documents by a measure of “closeness” of query and document

vectors
-- Distance, Cosine of the angle etc.
_______ !Jl E]'
7.q
¥) score(d,q) = — d
***** 11} 1iql

Image from: http://en.wikipedia.org/wiki/Vector_space_model

Vector Space Model: TF-IDF Model

Dimensions: Every word becomes a dimension.
D = <Xy, Xg5--45 X
Term Frequency:
A term that occurs many times in a document is important.
tf (t, D) = log(1+ #(z, D))
Inverse Document Frequency:

A term that occurs in many documents is unimportant.
& A7 0

: N
TF-IDF: idf (1) = loggr ==

Term-frequency weighted by inverse docdmérqt frequency.

ifidf (1, D)= of (1, D)~ idf (¢)

Vector Space Models: Enhancements

o Efficient scoring

o Inverted indices — compression, skip lists, etc.

o Top-k documents without scoring all documents entirely.
e Scoring methods

o Document length normalizations (e.g., pivoted)

o BM25 and various other heuristics
e Dimensionality reduction

o Stemming, phrase representations etc.
o LSI

Probabilistic Retrieval Models:
Language Modeling

, : <
Generative Assumption N————"
P(w,[8p)
Assume that each document is generated by a P(w,|0p)
probabilistic process specified by a multinomial
distribution. P(w,|6p)
—

Document model

o parameterized by 6
Query-likelihood Model

If a document D is relevant to a query, then the query
should be a high probability sample from the document
multinomial. Later termed as “uni-gram’

language model.

Probabilistic Retrieval Models:
Query-likelihood Model

Rank by the probability that the document model generated the query.

Query
model

P(4l0)

P©1D)= OPg19,)

g0

Document
model

Probabilistic Retrieval Models:
Estimation

Estimate document model via maximum-likelihood

-- Assume document is a sample of the underlying distribution.

#(w, D)
a #(w, D)

w; 1D

Zero probability issue!

q,(w)=

Latent Semantic Analysis

Premise

Using one-dimension per word is problematic.
Doesn’t scale.
(millions of words in large collections)

Doesn’t handle synonymy

(dog vs. canine)
Idea
Project documents and queries into a lower-dimensional space.
Instead of a |V| dimensional vector each word will be represented by a
k << |V| dimensional vector.

Latent Semantic Analvsis

Original term-by-document matrix

D1|D2|D3|D4|D5|D6 |Q1
rock 2 1 o|j2|0]|1 1
granite| 1 | O |1]0|0)]O0]O0
mable| 1 [2 (0[O |0 | O] 1
music |0 |0 |O0O|1]|2]|]0]0O0
song ojo|o0|1 0|2]0
band ofof(fo|oOo|1]|]0O0]O

Documents projected into 2D semantic space

D1 D2 D3 D4 D5 D6 Q1
Dim.1 | -0.888 | -0.759 | -0.615 | -0.961 | -0.388 | -0.851 | -0.845
Dim.2 | 0.460 | 0.652 | 0.789 | -0.276 | -0.922 | -0.525 | 0.534

1) Represent co-occurrences as a term-document TD
matrix (X).

2) Use singular-value decomposition to factorize TD.

X =Uxv?’

3) Sigma is a diagonal matrix. Take the top k singular values.

4) Project query and documents using the top-k singular values.
2 1 A _ N —1g/T
d=%_"U ,;‘F d ¢=2, Ugq

5) Cosine similarity to score documents.

Figures stolen from: http://www.cs.cmu.edu/~nasmith/LS2/gimpel.06.pdf

A bigger difference

X =Uxv?’

Original term-by-document matrix

D1|D2|D3|D4|D5|D6 | Q1 . . .
Documents projected into 2D semantic space
rock 2 1 0 2 0 1 1
D1 D2 D3 D4 D5 D6 Q1
granite | 1 | 0 | 110 [0 [0[0O Dim.1 | -0.888 | -0.750 | -0.615 | -0.961 | -0.388 | -0.851 | -0.845
mable| 1 | 2 1 0o lo]lo]o/| 1 Dim.2 | 0.460 | 0.652 | 0.789 | -0.276 | -0.922 | -0.525 | 0.534
music 0 0 0 1 2 0 0
song ojo|o0|1 0|2]0
band ocojofo|lO|1]0]0

It does not rely on term match;
Even two documents could be relevant even they do not share any common words

VT implies a set word vectors, later we will explain it.

Latent Semantic Analysis

e Benefits
o Addresses synonymy
o Dimensionality reduction

® |ssues
o Efficient SVD implementations necessary.
m Many implementations available.
o New documents need to be handled in a special way.
o Disconnect w/ retrieval performance.
o Relyondirect counting

e [Extensions
o Probabilistic Latent Semantic Analysis (pre-cursor to LDA).
o Hierarchical (H-PLSA)

Topic Models using LDA

Documents

LDA

election
vote

Ferrari

Wheels senate

Ty

nasdaq
rate
stocks

P(w4|T,) P(w,|T5)
P(w,|T,) P(w,|T5)
i:;&W|V||T1) i:;tWM [T2)

P(wa|Ty)
P(W.[Ty)

i:;&W|V||Tk)

Topics are distributions over words.

Documents are distributions over topics.

P(T4ID,
)

P(T2ID,
)

P(T4ID,

)
P(T2ID,

)

P(TIDY

Part 2.
Statistical language models
to neural language models

Background

e language model

N-gram Model Neural Probabilistic Pre-trained Language Model
Predicts the next item in um" Model Contextual word representation,
a sequence based on Learns a distributed representation the new pre-training-fine-tuning
its previous n-1 items. of words for language modeling. pipeline, larger corpora and
deeper neural architectures.
1954 1986 2013
Y Y e >
</ S L
1948 Distributional Hypothesis 2003 2018
A word is characterized by the Distributed nsprmmﬁm Word2vec
company it keeps.
Represents items by a pattern of A simple and efficient distributed
Bag-of-words activation distributed over elements. word representation used in many
Represents a sentence or a NLP models.
document as the bag of its words.

Liu et al., Representation Learning for Natural Language Processing, Springer, 2020

What is language modeling?

A language model assigns a probability to a N-gram
f:v* - R*

What is language modeling?

A language model assigns a probability to a N-gram
f:Vv* > R*

SfkIkljf fskjhfkjsh kifs fs kjhkjhs fsjhfkshkifh Low probability

ChatGPT is all you need high probability

What is language modeling?

A language model assigns a probability to a N-gram
f:V™ >Rt

A conditional language model assigns a probability of a word given some conditioning context
g: (V1 V) > R*

f Wy -wn)

And p(Wn|W1 S Wpo1) = gWy Wy, W) = f(wywp_1)

been got -

I've|

What is language modeling?

A language model assigns a probability to a N-gram
f:Vv* > R*

A conditional language model assigns a probability of a word given some conditioning context
g: (V1 V) > R*

f(wWy-wn)

And pWnlwy - Wiyog) = g(Wy - Wpog, W) = Zo RS

p(w,lwy ---w,_4) is the foundation of modern large language models (GPT, ChatGPT, etc.)

Language model using neural networks [

GPT-3/ChatGPT/GPT4 have
175B+ parameters

Humans have 100B+
neurons

ﬂack-box neural networks:

Recap:
Basic Probablility Theory

Sampling with replacement

Pick a random shape, then put it back in the bag.

PE@) =2/15 P@) =115 P(@ord) = 2/15
P(blue) =5/15 P(red) =5/15 P(/\|red) = 3/5
P(blue) = 2/5 PO =5/15

Sampling with replacement

Pick a random shape, then put it back in the bag.
What sequence of shapes will you draw?

P(QQA B
=1/15x1/15 % 1/15 x2/15

= 2/50625

PAQ@®A)

=3/15 x 2/15 x 2/15 x 3/15

= 36/50625
PE@) =2/15 P@) =115 P(@ord) = 2/15
P(blue) =5/15 P(red) =5/15 P(/\|red) = 3/5

P(blue |CJ) = 2/5 PQ) =5/15

Sampling with replacement

was beginning to get very tired of

sitting by her on the bank, of
having nothing to do: once or twice she
had peeped into the book her was
reading, but it had no pictures or
conversations in it, ' what is the use
of a book,' thought 'without
pictures or conversation?'

P(of) = 3/66 P(her) = 2/66

P() = 2/66 P() = 2/66

P(was) = 2/66 P(,) =4/66

P(to) = 2/66 P(') = 4/66

Sampling with replacement

beginning by, very but was ?
reading no tired of to into sitting
the, bank, thought of without

her nothing: having conversations

once do or on she it get the book her had

peeped was conversation it pictures or
in, 'what is the use had twice of

a book' 'pictures or' to

P(of) = 3/66 P(her) = 2/66

P() = 2/66 P() =2/66
P(was) = 2/66 P(,) =4/66

P(to) = 2/66 P(') =4/66

In this model, P(English sentence) = P(word salad) |

Probability theory: terminology

Trial (aka “experiment”)
Picking a shape, predicting a word
Sample space Q:

The set of all possible outcomes
(all shapes; all words in Alice in Wonderland)

Event w € Q:

An actual outcome (a subset of Q)
(predicting ‘the’, picking a triangle)
Random variable X: Q —» T

A function from the sample space (often the identity function)
Provides a ‘measurement of interest’ from a trial/experiment
(Did we pick ‘Alice’/a noun/a word starting with “x™/...7?)

What Is a probability distribution?

P(w) defines a distribution over Q iff

1) Every event w has a probability P(w) between 0 and 1.:
0< Plw C Q) <1

2) The null event @ has probability P(©®) =0:
P(DQ)=0

3) And the probability of all disjoint events sums to 1.

Y Plw)=1ifVj#i:wNw =0
wi L2 and |J, w; = Q

Joint and Conditional Probability

The conditional probability of X given Y, P(X|Y),
Is defined in terms of the probability of Y,P(Y),
and the joint probability of X and Y, P(X,Y):

P(X, Y)

P(X |Y) = P

QQ

@i,

P(blue | W) =2/5

The chain rule

The joint probability P(X,Y) can also be expressed in
terms of the conditional probability P(X | Y)

P(X, Y) = P(X]|Y)P(Y)

This leads to the so-called chain rule

P(X1, Xo.....Xn) = P(X1)P(Xo|X1)P(X3| X2, X1)e. P(X0| X1, X 1)

1=2

Independence

Two random variables X and Y are independent if

P(X, Y)= P(X)P(Y)

If X and Y are independent, then P(X|Y) = P(X):
P(X, Y)
P(X [Y)

P (X, Y independent)

)
)P(Y)
)
)

P(
X
P
= P(X

Probability models

Building a probability model consists of two steps:
1. Defining the model
2. Estimating the model’s parameters

(= training/learning)

Models (almost) always make

independence assumptions.
That is, even though X and Y are not actually independent,
our model may treat them as independent.

This reduces the number of model parameters that
we need to estimate (e.g. from n2to 2n)

language modeling

What is a language model?

* A probabilistic model of a sequence of words

* Joint probability distribution of words Wy, W, ..., W,

P(wW{, Wy, Wg, ..., W,)

“It was the best of times, it was

Sample space = " e . .)
th rst of tim
finite pieces of English text = IESIES IS RTES How likely is a given
" “Hey ‘sup.” phrase, sentence,
Q “green sentences, loaded with vitamins” paragraph or even a
?
/ “911 how can | help you” document’

“Call me Ishmael”
(i.e., Pr[w;w,w,...w,] associated with every finite word
sequence W{W,W,...W, (including nonsensical ones)

Chain rule

Conditional probability:

_ p(w | wy, W,), VW €
p(Wq, Wy, Wy, ..., Wp) = V

p(wq)p(w, | Wl)p(W3| Wy, W) =t - - i p(wp | wy, wy, oo, wp)

Sentence: “the cat sat on the mat”

P(the cat sat on the mat) = P(the) « P(cat|the) « P(sat|the cat)
«P(on|the cat sat) « P(the|the cat sat on)
«~P(mat|the cat sat on the)

Implicit ord/

Language models: Narrow Sense

A probabilistic model that assigns a probability to every finite sequence (grammatical or not)

Sentence: “the cat sat on the mat”

P(the cat sat on the mat) = P(the) x P(cat|the) x P(sat|the cat)
*P(on|the cat sat) x P(the|the cat sat on)
*P(mat|the cat sat on the)

Implicit order

GPT-3 still acts in this way but the model is implemented as a very large neural network of
175-billion parameters!

Language models:Broad Sense

K/

¢ Decoder-only models (GPT-x models)

«» Encoder-only models (BERT, RoBERTa, ELECTRA)
«» Encoder-decoder models (T5, BART)

@ Mask LM Mask LM \
o 1 *

The latter two usually involve a
different pre-training objective.

"cola sentence: The
course is jumping well."

BERT
- EA e =l =
—

on the grass. sentence2: A rhino

"stsb sentencel: The rhino grazed
is grazing in a field."

[T][T[SEP]][T,] [T,] ["translate English to German: That is good."

LI (I LI mm
"summarize: state authorities
[Tok N][[SEP] W[Tok‘l \| [TOKM] dispatched emergency crews tuesday to
survey the damage after an onslaught
I—'—‘ of severe weather in mississippi.."

Masked Sentence A Masked Sentence B

*
Unlabeled Sentence A and B Pair

"Das ist gut."

"six people hospitalized after
a storm in attala county."

Language models are everywhere

Google

how is the weather in new X

=
@

how is the weather in new york

how is the weather in new zealand

how is the weather in new orleans

how is the weather in new jersey

how is the weather in new orleans in february
how is the weather in new york in march

how is the weather in new orleans in january
how is the weather in new mexico

how is the weather in new york in february

how is the weather in new orleans in december

Google Search I'm Feeling Lucky

Report inappropriate predictions

best

New Message

Language models are thel

most

Cancel

same

Estimating probabilities

trigram
count(the cat sat bigram
P(sat|the cat) = (e)
count(the ¢ Maximum
P(on|the cat sat) = count(the cat sat on) likelihood
count(the cat sat) estimate
(MLE)

Assume we have a vocabulary of size V
how many sequences of length n do we have?

A n* V
B) n
C)V
D) V/in

Estimating probabilities

count(the cat sat)

P(sat|th t) =
(satlthe cat) count(the cat) Maximum
P(onthe cat sat) = count(the cat sat on) likelihood
count(the cat sat) estimate
(MLE)

« With a vocabulary of size V, # sequences of lengthn = V"

» Typical English vocabulary ~ 40k words

« Even sentences of length <= 11 results in more than 4 * 10”50 sequences.
Too many to count! (# of atoms in the earth ~ 10750)

Markov assumption

Use only the recent past to predict the next word

Reduces the number of estimated parameters in exchange for modeling
capacity

1st order

P(mat|the cat sat on the) * P(mat|the)

2nd order

P(mat|the cat sat on the) T P(mat|on the)

Andrey Markov

kth order Markov

Consider only the last k words (or less) for context

P(w, |

WW, . --Wi-1l) ~ P(w, Ilwl._k ua MWy g

which implies the probability of a sequence is:

Pww,...w)= HP(wi lw,_...w._))

(assumew;=¢ V] <0)

Need to estimate counts for up to (k+1) grams

n-gram models

Unigram P(wy,wa,...wy,) = H P(w;) e.g. P(the) P(cat) P(sat)
i=1
Bigram P(wi, w2, .. w,) = H P(w;|w;_1) e.g. P(the) P(cat | the) P(sat | cat)
i=1

and Trigram, 4-gram, and so on.

Larger the n, more accurate and better the language model
(but also higher costs)

Caveat: Assuming infinite data!

Generation using a language model

Generating from a language model

Given a language model, how to generate a sequence?

Bigram P (w1, w2, ...w;,) = HP(wa-|wL-_1)
i=1

Generate the first word W, ~ P (W)

Generate the second word W, ~ P(w | w,)

Generate the third word W5 ~ P(W | w,)

however
the of a to in (p=.0003) _

[o006 | o003 |o02]o02|0.02] | Y

polyphonic
p=.000901 8

.“\||

|
.06 .09 .11 .13.15
0

Generating from a language model

Given a language model, how to generate a sequence?

Trigram Pwi,wa, ..., wy,) = HP(UJ@‘ | wi—2, w;i—1)
i=1

Generate the first word W, ~ P (W)
Generate the second word W, ~ P(wW | w,)
Generate the third word W5 ~ P(wW | Wy, W)

Generate the fourth word W, ~ P(W | W,, W)

Generations

release millions See ABC accurate President of Donald Will

Unigram cheat them a CNN megynkelly experience @ these word
out- the
Bigram Thank you believe that @ ABC news, Mississippi tonight

and the false editorial | think the great people Bill Clinton

Trigram We are going to MAKE AMERICA GREAT AGAIN!
#MakeAmericaGreatAgain https: //t.co/DjkdAzT3WV

Typical LMs are not sufficient to handle long-range dependencies

“Alice/Bob could not go to work that day because
she/he had a doctor’s appointment”

Generations

Example from a GPT-2 output: prompt aka. conditional generation

With the start of the new academic year, Princeton has an opportunity to help provide a new
generation of women with a diverse set of academic resources for higher education.

We are offering the resources of the Princeton-McGill program specifically to women with undergraduate
degrees who would like to enhance their academic experience. Princeton-McGill offers a comprehensive
suite of services for women and their families including a variety of graduate programs, support programs,
and the opportunity to serve as leaders in their communities with a wide variety of programs, activities
and services. For the upcoming fall, Princeton-McGill will also offer its Women's Center , which is located
in a renovated women's dorm.

At Princeton, we are working with the Princeton-McGill community to develop a suite of programs that are
designed to give new and returning students a strong foundation for a successful, rewarding graduate
career. The Women's Center , the Princeton-McGill Women's Center provides a range of supports to
address the specific needs of female doctoral degree graduates. Programs are tailored to meet the unique
needs of women under the age of 28, women and families

https://talktotransformer.com/

n

P(wy,wa,...,w,) = | I P(w; | wi—1024, - - -, Wi—2,Wi_1)
=1
Modern LMs can handle much longer contexts!

Generation methods (advanced)

® Greedy: choose the most likely word!
To predict the next word given a context of two words Wy, Wo:

W5 = arg max P(w | wy, w,)

wevV
* Top-k vs top-p sampling:

1.0- s ling et borivs, S = The boy went to the ___
' 1.0-
0.8 - 0.8 -

il k=4 7% p=0.75

s s

& 0.4- &g
N N I .
0.0 - ll---—— 0.0 - ---—_
. ery beach restaurant grocery beach restau

Next token [W] Next token [W]
Top-k sampling Top-p sampling

https://blog.allenai.org/a-guide-to-language-model-sampling-in-allennlp-3b1239274bc3

Evaluating a language model (perplexity)

Extrinsic evaluation

Language Machine
model Translation Eval
‘\ /
refine

Train LM apply to task observe accuracy

Directly optimized for downstream applications

* higher task accuracy better model

December 13, 2018

ﬁ Ankur Gandhe

Expensive, time consuming

Hard to optimize downstream objective (indirect feedback)

Alexa Alexa researc h

eeeeeeeeee

Intrinsic evaluation of language models

Research process:
« Train parameters on a suitable training corpus
« Assumption: observed sentences ~ good sentences

» Test on different, unseen corpus

 |f a language model assigns a higher probability to the
test set, it is better

!

« Evaluation metric - perplexity!

Perplexity (ppl)

* Measure of how well a LM predicts the next word

- For atest corpus with words W, W,, ... W,

(Perplexity: Pwy, Wy, ..., w,)~n]

) 1 l n
ppl(S) = e* where x=——logP(w,,...,w,) =— —Z log P(w;|w;...w;_y)
n n =

1 n
« Unigram model: x = — — Z log P(w;) (since P(w;|w,...w;_) & P(W)))
- . .

i=1

« Minimizing perplexity ~ maximizing probability of corpus

Intuition on perplexity

If our k-gram model (with vocabulary V) has following probability:

1
PW]|w,_,...Wi_;)J= —— VweV

what is the perplexity of the test corpus?

A) eVl B) | V| o) | VI D) e~V

1 n
ppl(S) =e* where x =—— Z log P(w; | wy...w;_y)
n

i=1

Intuition on perplexity

If our k-gram model (with vocabulary V) has following probability:

1
PW|W,_,...Wi)]= —— VYweV
(Wi Wiy 1) |V | W ppI(S) = ¢* where
= ——ZlogP(w Wy ..owi_y)
what is the perplexity of the test corpus?
A el B) | V|) V|7 D) e~1V!

ppl — e—%nlog(l/IVl) — |V|

Measure of model’s uncertainty about next word (aka "average branching factor’)

branching factor = # of possible words following any word

TEST PERPLEXITY

Perplexity

Training corpus 38 million words, test corpus 1.5 million words, both WSJ

Perplexity ~ g¢2 170 109
(test)

100

Zaremba et al. (2014) - LSTM (large)

75
Recurrént-highway networks
AWD—LSTM‘+~eonLi;|‘uous cache pointer
50 AWD-LSTM=MoS + dynamic eval
GPT-2
T ®—_BERT-Large-CAS
25 GPT=3_(Zero-Shot)
. \
0
Jan'15 Jul'15 Jan'16 Jul'le Jan'17 Jul'17 Jan'18 Jul'18 Jan'19 Jul'19 Jan '20 Jul 20 Jan 21 ppl — 20 5

Other models -o- Models with lowest Test perplexity

https://paperswithcode.com/sota/language-modelling-on-penn-treebank-word

Smoothing in language modeling

Generalization of n-grams

Any problems with n-gram models and their evaluation?

* Not all n-grams in the test set will be observed in training data

» Test corpus might have some that have zero probability under our model

« Training set: Google news

» Test set: Shakespeare

« P(affray | voice doth us) = 0 = P(test corpus) =0

« Perplexity is not defined.

pI(S) = e¢* where

= ——ZlogP(w |w ..

Wi_1)

Frequency

Sparsity in language

14000
|

10000
|

1

f
req o rank

6000
|

1 e Zipf's Law

0 20 40 60 80 100

0 2000

Rank
* Long tail of infrequent words

» Most finite-size corpora will have this problem.

Smoothing

« Handle sparsity by making sure all probabilities are non-zero in our model
« Additive: Add a small amount to all probabilities

» Interpolation: Use a combination of different granularities of n-grams

» Discounting: Redistribute probability mass from observed n-grams to
unobserved ones

Smoothing intuition

When we have sparse statistics:
P(w | denied the)

3 allegations
2 reports

1 claims

1 request

7 total

Steal probability mass to generalize better
P(w | denied the)
2.5 allegations
1.5 reports
0.5 claims
0.5 request
2 other
7 total

x 5
8 = ©
— © =
= =L
T £ O o
7))
S
() (@] v o © @ —
= o £ = = c 303_

(Slide credit: Dan Klein)

Laplace smoothing

Also known as add-alpha

Simplest form of smoothing: Just add to all counts and renormalize!

Max likelihood estimate for bigrams:

C(wi—1,w;)
P(w;|w;—1) = Clwr 1)
After smoothing:
C 1—1y, Wy
P(w;|w;—1) Wiz,)| o

Raw bigram counts

(Berkeley restaurant corpus)

e Qut of 9222 sentences

1 want | to eat chinese | food | lunch | spend
1 5 827 0 9 0 0 0 2
want 2 0 608 | 1 6 6 5 1
to 2 0 4 686 | 2 0 6 211
eat 0 0 2 0 16 2 42 0
chinese 1 0 0 0 0 82 1 0
food 15 0 15 0 1 4 0 0
lunch 2 0 0 0 0 | 0 0
spend 1 0 1 0 0 0 0 0

(Slide credit: Dan Jurafsky)

Smoothed bigram counts

1 want | to eat chinese | food | lunch | spend
1 6 828 1 10 1 1 1 3
want 3 1 609 | 2 7 7 6 2
to 3 1 5 687 | 3 1 7 212
eat 1 1 3 1 17 3 43 1
chinese 2 1 1 1 1 83 2 1
food 16 | 1 16 1 2 5 1 1
lunch 3 1 1 1 1 2 1 1
spend 2 1 2 1 1 1 1 1

Add 1 to all the entries in the matrix

(Slide credit: Dan Jurafsky)

Smoothed bigram probabilities

C(wi—la wz) + «

P(wilw;—1) = a=1
C (Wi;—1 -+ v | V |

| i want to eat | chinese | food | lunch | spend |
1 0.0015 0.21 0.00025| 0.0025 0.00025 0.00025| 0.00025| 0.00075
want 0.0013 0.00042| 0.26 0.00084 | 0.0029 0.0029 0.0025 0.00084
to 0.00078 | 0.00026| 0.0013 0.18 0.00078 | 0.00026| 0.0018 0.055
eat 0.00046| 0.00046(0.0014 0.00046| 0.0078 0.0014 0.02 0.00046
chinese || 0.0012 0.00062 | 0.00062| 0.00062| 0.00062(0.052 0.0012 0.00062
food 0.0063 0.00039 | 0.0063 0.00039| 0.00079(0.002 0.00039| 0.00039
lunch 0.0017 0.00056| 0.00056| 0.00056| 0.00056(0.0011 0.00056 | 0.00056
spend 0.0012 0.00058 | 0.0012 0.00058 | 0.00058| 0.00058] 0.00058| 0.00058

(Credits: Dan Jurafsky)

Linear Interpolation

P(w; | wi—a, wi—1) = MP(w; | wi_a, wi_1)
+)\2P(’w¢|’w@'_1)

> Ai=1

» Use a combination of models to estimate probability

» Strong empirical performance

Trigram
Bigram

Unigram

How can we choose lambdas?

Text corpus

il B

Train

Development/
Validation

Test

 First, estimate n-gram prob. on training set

» Then, estimate lambdas (hyperparameters) to maximize
probability on the held-out development/validation set

* Use best model from above to evaluate on test set

Discounting

* Determine some “mass” to remove from probability estimates
* More explicit method for redistributing mass among unseen n-grams

« Just choose an absolute value to discount (usually <1)

» Define Count*(x) = Count(x) - 0.5

» Missing probability mass:

a('wi_l) =1-

Count™ (w;—1)

Absolute Discounting

Count(w;_1)

a(the) =10 x 0.5/48 = 5/48

Divide this mass between words
for which Count(the,) =0

* Count” (=
T Count(z) | Count™(x) _Coun—t((.r))
the 48
the, dog 15 14.5 14.5/48
the, woman 11 10.5 10.5/48
the, man 10 9.5 9.5/48
the, park 5 4.5 4.5/48
the, job 2 1.5 1.5/48
the, telescope 1 0.5 0.5/48
the, manual 1 0.5 0.5/48
the, afternoon 1 0.5 0.5/48
the, country 1 0.5 0.5/48
the, street 1 0.5 0.5/48

Part 3:

Word representation in modern NLP

The big idea: model of meaning focusing on similarity

—0.924
0.130

Vdoo =
—0.290 dog
0.276

Ucat —

0.234

0.266 B

0.939 VUlanguage —
—0.199

Uthe —

—0.124
0.430
—0.200

0.329

0.290
—0.441
0.762

0.982

Similar words are “nearby
in the vector space”

0 man

<o ® n

10the L]
fathe king ® queer
1 L ° husband °
[] unt
incle chair °
° omgplite fe
0
— ® o
S it =
Q
2,
-0.1
nboy girl
l“ev‘prmc > ®
02 ° 2 ddlgeRePrincess
°
01?8 /f@\g
0.7 g,
Py 06
N ~
N N Q S 5 Y 0.5
[gender] 4

(Bandyopadhyay et al. 2022)

How do we represent words in NLP models?

® n-gram models

n

P(wl, w2, wn) = H P(TUZ|’UJZ_1)
1=1

C(wi_l, ’U)@) + «
C(wi_l)—l— QflV|

P(wi|w¢_1) —

®* Naive Bayes

Count(w;, ¢;)|[+ «

Plu, | ¢) =
(wi] ¢5) > wey Count(w, ¢;) + a|V|

Each word is just a string

or indices W; in the
vocabulary list

cat = the 5th word in
dog = the 10th word in
cats = the 118th word in

How do we represent words in NLP models?

® Logistic regression

Var Definition

Value in Fig. 5.2

X1 count(positive lexicon) € doc)
x; count(negative lexicon) € doc)

: 1f “no” € doc
string match ’ﬁ(‘)':)therwise
x4 count(1st and 2nd pronouns € doc)
1 1if “!” € doc
0 otherwise

x¢ log(word count of doc)

X5

3
2

1
3
0
In(64) = 4.15

What do words mean?

Synonyms: couch/sofa, car/automobile, filbert/hazelnut

Antonyms: dark/light, rise/fall, up/down vanish disappear 9.8

belief impression 5.95
Some words are not synonyms but they share some nnsele bone 3.65

element of meaning modest flexible 0.98
hole agreement 0.3

® cat/dog, car/bicycle, cow/horse
Some words are not similar but they are related SimLex-999
® coffee/cup, house/door, chef/menu

® Affective meanings or connotations:

Valence Arousal Dominance

courageous 8.05 5.5 7.38
music 7.67 857 6.5
heartbreak 2.45 5.65 3.58

valence: the pleasantness of the stimulus cub 6.71 3.95 4.24

arousal: the intensity of emotion provoked by the stimulus

(Osgood et al., 1957)

dominance: the degree of control exerted by the stimulus

Why word meaning in NLP models?

® With words, a feature is a word identity (= string)

® Feature 5: "The previous word was “terrible
® Requires exact same word to be in the training and testing set

“terrible” # “horrible”

® If we can represent word meaning in vectors:

® The previous word was vector [35, 22, 17, ...]
® Now in the test set we might see a similar vector [34, 21, 14, ...]
® We can generalize to similar but unseen words!!!

Lexical resources

pubbzaton
WordNet Search = 3'1 sccumulation “fors of Gog
aggregaton atcount book Wora
book of account 4 Seripture
Word to search for: [mouse | search wordNet | assemblage it o Hoby Wt
e) P
Di | " s - ° %0t Holy Scriplure
isplay Options: [(Select option to change) v|| Change callection eger é
E C 5
Key: "S:" = Show Synset (semantic) relations, "W:" = Show Word (lexical) relations 4 O00d Bosk
Display options for sense: (gloss) "an example sentence" . S Chaistian Bible
\ Bl
Noun rulo book o Py JYNTS ¢
ancbon book Beot
« S: (n) mouse (any of numerous small rodents typically resembling diminutive ° & .
rats having pointed snouts and small ears on elongated bodies with slender o
usually hairless tails) subdivsion i o
« S: (n) shiner, black eye, mouse (a swollen bruise caused by a blow to the . ° A
eye) . . P o g ’ Koran
« S: (n) mouse (person who is quiet or timid) ° B
« S: (n) mouse, computer mouse (a hand-operated electronic device that product a-Qur'an
controls the coordinates of a cursor on your computer screen as you move it . b 3
around on a pad; on the bottom of the device is a ball that rolls on the production hold X rogitter
surface of the pad) "a mouse takes much more room than a trackball”
Verb schedule out sown

« S: (v) sneak, mouse, creep, pussyfoot (to go stealthily or furtively) "..stead of .

sneaking around spying on the neighbor's house"
« S: (v) mouse (manipulate the mouse of a computer)

(-) Huge amounts of human

http://wordnetweb.princeton.ed labor to create and maintain

u/

http://wordnetweb.princeton.edu/

Distributional hypothesis

Distributional hypothesis

® “The meaning of a word is its use in the language”

_ [Wittgenstein Pl 43]
®* “If A and B have almost identical environments we

say that they are synonyms.” [Harris 1954]

* “You shall know a word by the company it keeps” [Firth 1957]

Distributional hypothesis

Distributional hypothesis: words that occur in similar contexts
tend to have similar meanings

J.R.Firth 1957

e “You shall know a word by the company it keeps”

e One of the most successful ideas of modern
statistical NLP!

When a word w appears in a text, its context is the set of words that appear
nearby (within a fixed-size window).

...government debt problems turning into banking crises as happened in 2009...
...saying that Europe needs unified banking regulation to replace the hodgepodge...

...Indlia has just given its banking system a shot in the arm...

These context words will represent “banking”.

Distributional hypothesis

“Ongchoi”

Ongchoi is delicious sautéed with garlic

Ongchoi is superb over rice

Ongchoi leaves with salty sauces

Distributional hypothesis

“Ongchoi”

Ongchoi is delicious sautéed with garlic

Ongchoi is superb over rice Q: What do you think ‘Ongchoi’
means?
Ongchoi leaves with salty sauces A) a savory snack

B) a green vegetable
C) an alcoholic beverage

D) a cooking sauce

Distributional hypothesis

“Ongchoi”

Ongchoi is delicious sautéed with garlic

Ongchoi is superb over rice

Ongchoi leaves with salty sauces

You may have seen these spinach sautéed with garlic over rice

sentences before: chard stems and leaves are delicious
collard greens and other salty leafty

greens

Distributional hypothesis

“Ongchoi”

Ongchoi is a leafty green like spinach, chard or collard
greens

kangkong
rau mudng

How can do the same thing computationally?

e Count the words in the context of ongchoi

e See what other words occur in those contexts

We can represent a word’s context using vectors!

Sparse vs dense vectors

Words and vectors Q: Whatis the

dimension of each

such vector?
First solution: Let’s use word-word co-occurrence counts to

represent the meaning of words! AV

Each word is represented by the corresponding row vector

context words: is traditionally followed by cherry pie, a traditional dessert
4 words to the left + often mixed, such as strawberry rhubarb pie. Apple pie
computer peripherals and personal digital assistants. These devices usually

4 words to the right a computer. This includes information available on the internet

aardvark .. computer data result pie sugar
cherry 0 2 8 9 442 25
strawberry 0 0 0 1 60 19
digital (o 1670 1683 85 5 4)
information 0 3325 3982 378 5 13

Most entries are 0s = sparse vectors

Measuring similarity

A common similarity metric: cosine of the

4000— angle between the two vectors (the
000 =~
S information larger, the more similar the two vectors
5 3000 [3982,3325] :
Q. digital u-v
€ 2000-{(1683,1670] cos(u,v) = ————
8 [alfv]
1000

|4
I . E— Zl | U;V;
1000 2000 3000 4000 cos(u,v) =

data \/Zl‘illu \/ZIVI

Q: Why cosine similarity instead of dot productu - v?

What is the range of cos(U, V) if u, v are count vectors?

a) [-1, 1]

4
c) [0, +o0) cos(u,v) = 2i=1 Uil

(
(b) [0, 1]
(
(

d) (— 00, + o) \/ZIVI \/ZIVI

What is the range of cos(U, V) if u, v are count vectors?

(@ [-1,1]
(b) [0, 1]
(
(d

V]|
c) [0, +o0) cos(u,v) = 2iz1 Uil

) (~e0, +09) VI /s v

The answer is (b). Cosine similarity ranges between -1 and 1 in general. In this model,
all the values of U;, V; are non-negative.

Any issues with this model?

Raw frequency count is a bad representation!

®* Frequency is clearly useful; if “pie” appears a lot near “cherry”,
that's useful information.

* But overly frequent words like “the”, “it", or “they” also appear a lot
near “cherry”. They are not very informative about the context.

Sparse vs dense vectors

® The vectors in the word-word occurrence matrix are

® Long: vocabulary size
® Sparse: most are O’'s

¢ Alternative: we want to represent words as short (50-300 dimensional) & dense (real-

valued) vectors

® The basis for modern NLP systems

Ucat =

Uthe =

—0.224
0.130
—0.290
0.276

0.234

0.266

0.239
—0.199

—0.124
L | 0430
s 7| —0.200

0.329

0.290
—0.441

Ulanguage — 0.762

0.982

Why dense vectors?

Short vectors are easier to use as features in ML systems

Dense vectors generalize better than explicit counts (points in real
space vs points in integer space)

Sparse vectors can’t capture higher-order co-occurrence

® W, co-occurs with “car”, W, co-occurs with “automobile”

®* They should be similar but they aren’t because “car” and
“automobile” are distinct dimensions

In practice, they work better!

How to get short dense vectors?

®* Count-based methods: Singular Singular value decomposition (SVD) of
value decomposition (SVD) of count PPMI weighted co-occurrence matrix
matrix
i (61 0 0 ... 0]
00 oo 0 ... 0 embedding T
X W 0 0 o3 ... 0 C for |
= T word i
I . W
] | I 1loo o ..o]|]
V| x V| V|x|V| Vx|V V| x V|
-|V| xk
[1o 0 0 0 C
0 (02,) 0 0
¥ w |lo 0o ..0| #**WM
a Do T We can approximate the full
! 1 I JL0 0 0 ... 0 matrix by only keeping the
148314 V| xk kxk top k (e.g., 100) singular

values!

How to get short dense vectors?

®* Count-based methods: Singular value
decomposition (SVD) of count matrix

® Prediction-based methods:

® Vectors are created by training a classifier
to predict whether a word c (“pie”) is likely
to appear in the context of a word w
(“cherry”)

®* Examples: word2vec (Mikolov et al.,

2013), Glove (Pennington et al., 2014),
FastText (Bojanowski et al., 2017)

Also called word embeddings!

Don’t count, predict! A systematic comparison of
context-counting vs. context-predicting semantic vectors

Marco Baroni and Georgiana Dinu and German Kruszewski
Center for Mind/Brain Sciences (University of Trento, Italy)

(Baroni et al., 2014)

Part 4.
Word2vec

WO r’d embeddings Goal: represent words as short (50-300

dimensional) & dense (real-valued) vectors

Count-based approaches Prediction-based approaches
® Used since the 90s ®* Formulated as a machine learning problem
® Sparse word-word co-occurrence PPMI matrix ®* Word2vec (Mikolov et al., 2013)

® Decomposed with SVD ® GloVe (Pennington et al., 2014)

Underlying theory: Distributional Hypothesis (Firth, '57)
“Similar words occur in similar contexts”

Word embeddings: the learning problem

Learning vectors from text for representing words

® Input: a large text corpus, vocabulary V,
vector dimension d (e.g., 300)

Y .
Output: f 2 VAN Rd

Each coordinate/dimension of the
vector doesn’t have a particular
interpretation

Ucat =

Uthe —

—0.224
0.130
—0.290
0.276

0.234

0.266

0.239
—0.199

Udog =—

Ulanguage —

—0.124
0.430
—0.200
0.329

0.290
—0.441
0.762
0.982

Word embeddings

® Basic property: similar words have similar vectors

Word Cosine distance

norway 0.760124

denmark 0.715460

word W*= “sweden” finland 0.620022
switzerland 0.588132

* belgium 9.585835

al“g max COS(B(TU), e(w)) netherlands 9.574631
weV iceland 0.562368
estonia 9.547621

slovenia 8.531408

cos(U, V) ranges between -1 and 1

WO rd e m b e d d i ngs ACL’19 Towards Understanding Linear Word Analogies

Kawin Ethayarajh, David Duvenaud’, Graeme Hirst
University of Toronto

® They have some other nice properties too! PVector Institute

{kawin, duvenaud, gh}@cs.toronto.edu

Spain \
4 Italy \Madrid

Germany s s Rome
AT walked Berlin
.‘ . Turkey \
. ~‘~_~ oman Ankara
v R :
king T-. @ O swan RO, e o
e walking @ Canada Ottawa
queen JEPAN, ——_ kyo
\ \>
/ O Vietnam -————oou__ Hanoi
swimming china - Beijing
Male-Female Verb tense Country-Capital
Uman — Uwoman ~ Uking — Uqueen Word analogy test: a : a* :: b : b*
. —_ —~ - * * -
UParis — UFrance ~ URome — Ultaly b* = argmax cos(e(w),e(a”) — e(a) + e(b))

weV

Word embeddings

¢ They have some other nice properties too!

v(cuatro) ~ Wu(four)

Ocuatro (four)

Ouno (one
Ocinco (five)

Otres (three

Odos (lwo)

O caballo (horse)
Ovaca (cow)
pergp (dog)

O cerdo (pig)

gato (cat)

4 -03 :] 't 02 3 04

(Mikolov et al, 2013): Exploiting Similarities among Languages for Machine

Translation

Embeddings as a window onto historical semantics

Train embeddings on different decades of historical text to see meanings shift

a

tasteful

gay (1990s)

~30 million books, 1850-1990, Google Books data

daft 9ay (1900s)

flaunting
g cheerful
pleasant
frolicsomye

witty Y gay (1950s)

bright

homosexual

ach
leshian

broadcast (1900s)

newspa i,‘h’ rs

(eievision

radin
auiu

bl broadcast (1990s)

C olemn
awful (1850s)
majestic
awn '
Ire] LJ(ri‘ :
oom\
rrib
appalliwg terrible
awful (1900s) N
awful (1990s)
awfully ="

William L. Hamilton, Jure Leskovec, and Dan Jurafsky. 2016. Diachronic Word Embeddings Reveal
Statistical Laws of Semantic Change. Proceedings of ACL.

Embeddings reflect cultural bias!

Bolukbasi, Tolga, Kai-Wei Chang, James Y. Zou, Venkatesh Saligrama, and Adam T. Kalai. "Man is to computer
programmer as woman is to homemaker? debiasing word embeddings." In NeurlIPS, pp. 4349-4357. 2016.

Ask “Paris : France :: Tokyo : x”
° X =Japan

Ask “father : doctor :: mother : x”
°© X =nurse

Ask “man : computer programmer :: woman : x”
o x = homemaker

Algorithms that use embeddings as part of e.g., hiring searches for
programmers, might lead to bias in hiring

word2vec

* (Mikolov et al 2013a): Efficient Estimation of Word Representations in Vector Space

o (Mikolov et al 2013b): Distributed Representations of Words and Phrases and their Compositionality

INPUT PROJECTION OUTPUT

w(t-2)
w(t-1)
SUM
L W)
w(t+1)
Thomas w(t+2)

Mikolov

Continuous Bag of Words
(CBOW)

fiNPUT PROJECTION OUTPUT \

w(t-2)

w(t-1)

w(t) —

w(t+1)

K N J

Skip-gram

Skip-gram

o Assume that we have a large corpus Wy, Wo, ..., Wy € V A classification

<« problem!

® Key idea: Use each word to predict other words in its context

®* Context: a fixed window of size 2m (m = 2 in the example)

P(b | @) = given the center word is
a, what is the probability that b is a
P(We_p | we) PWeya | W) context Word’?p ’

P(we—q | W) P(Weyq | we)
N

, , P(- | @) is a probability distribution
banking crises as :

defined over V: Z Pwla)=1

wevV

problems turning

L J L)
T T L Y J

outside context words center word outside context words
in window of size 2 at position t in window of size 2

We are going to define
this distribution soon!

Skip-gram

P(we_p | W) PWeyp [W)
Plw,_ P .. .
Wi [vid g e Convert the training data into:
problems turning banking crises as .. (into, problems)
' ; S ¢) (into, turning)
outside context words center word outside context words (I nto banking)
in window of size 2 at position t in window of size 2 !

(into, crises)
(banking, turning)
(banking, into)
P(we_y | we) PWesy | we) (banking, crises)

Pwe_p | W) P(Weyp | we)

problems turning into crises as (bankl ng, as)
L . T ’ J e
%‘—l
outside context words center word outside context words
in window of size 2 at position t in window of size 2

Our goal is to find parameters that can maximize

P(problems | into) x P(turning | into) x P(banking | into) x P(crises | into) x P(turning | banking) x P(into | banking) x P(crises | banking) x P(as | banking)...

Skip-gram: objective function

® For each positiont = 1,2,...T, predict context words within context size m,
given center word W

all the parameters to be optimized

] Pl |ws:6)
m<j<m,j7

I

e |tis equivalent as minimizing the (average) negative log likelihood:

0

1
J(0) = ——log L () ——Z > log P(wig; | wy;6)

t=1 —m<j5<m,j#0

How to define P(wy,; | w; 6)?

e Use two sets of vectors for each word in the vocabulary
u, € RY: vector for center word a , Va € V
v, € R%: vector for context word b , Vb € V

® Use inner product U, - V,, to measure how likely word a appears with context word b

Softmax we have seen in multinomial logistic regression!

exp(Uw, * Vi, ;) /

Zkev exp(Uyw, * Vi)

Pwiyj | wy) =

Recall that P(- | @) is a probability
distribution defined over V...

... vs multinominal logistic regression

exp(w,- X +Db,)

Multinomial logistic P(y =C | X) = —
regression: D i=1 exp(Wj - X + bj)

e Essentially a |V|-way classification problem
exp (W, * Vi,)

B Zkev eXp(u’wt . Vk')

P(wH-j ’ wt) o If we fix W, ,itis reduced to a multinomial

logistic regression problem.

e However, since we have to learn both and
together, the training objective is non-convex.

... vs multinominal logistic regression

N “convex” AN “non-convex”
J(8) J(0)
> >
v, v,

* It is hard to find a global minimum

* But can still use stochastic gradient descent to optimize

pl+) =) _ nv,J()

Important note

CXp(u’wt) V‘wt+j)

T
1
JUB) = —— log
O)=-7> 2> s S v OXp (U, - VE)

t=1 —m<j5<m,j5#0

® In this formulation, we don’t care about the classification task itself like we do for
the logistic regression model we saw previously.

®* The key point is that the parameters used to optimize this training objective—
when the training corpus is large enough—can give us very good representations
of words (following the principle of distributional hypothesis)!

How many parameters in this model?

T
| exp(Ww, - V)
J(a) = = E E log L

t=1 —m<j<m,j#0 D kev €XP(Uw, - Vi)

How many parameters does this model have (i.e. what is size of)?

(@ d|V|

(b) 2d| V| d = dimension of each vector
(c) 2m| V|

(d) 2md| V|

How many parameters in this model?

T
| exp(Uy, - Vu,, ;)
J() = = E E log e

t=1 —m<j<m,j7#0 2 kev eXP(Uw, - V&)

How many parameters does this model have (i.e. what is size of)?

(@ d|V|

(b) 2d| V| d = dimension of each vector
(c) 2m| V]

(d) 2md| V]| The answer is (b).
Each word has two d-dimensional vectors, soitis 2 x | V | x d.

word2vec formulation

T

HO)=-23 Y g exp(tus, * V)

t=1 —m<j<m,j#0 Zkev exp(Uw, - Vi)

Q: Why do we need two vectors for each word instead of one?
A: because one word is not likely to appear in its own context window, e.g.,

P(dog | dog) should be low. If we use one set of vectors only,
it essentially needs to minimize udog' udog--

Q: Which set of vectors are used as word embeddings?

A: This is an empirical question. Typically just U,, but you can also
concatenate the two vectors..

Word2vec and its variants

Skip-gram with negative sampling (SGNS)

Problem: every time you get one pair of (t, c), you need to update V| with all the
words in the vocabulary! This is very expensive computationally.

WS b O [PED-Dw k=
duy e vy Pk | t)u, k4

Negative sampling: instead of considering all the words in V, let's randomly sample K
(5-20) negative examples.

exp(ut . VC)) o(x) =

. = —1
softmax: Y 08 (Zkev exp(uy - vi)

K
Negative sampling: y = —log(o(us-ve)) — ZijP(u') log(o(—u; - v;))
i=1

1

1+ exp(—x)

Skip-gram with negative sampling (SGNS)

Key idea: Convert the |V| -way classification into a set of binary classification tasks.

Every time we get a pair of words (t, c), we don’t predict c among all the words in the
vocabulary. Instead, we predict (t, c) is a positive pair, and (t, ¢) is a negative pair for a

small number of sampled c’.

ositive examples + ati . . K

:‘ ¢ p t nt;gdtwe ex:implea) y = —log(a(u; - v)) — Z Ej~p(w) log(o(—u; - v;))
apricot tablespoon apricot aardvark apricot seven =1

apricot of apricot my apricot forever _ _

apricot jam apricot where apricot dear P(w): sampling according to the frequency of words
apricot a apricot coaxial apricot if

Similar to binary logistic regression, but we need to optimize and together.

Ply=1]t,¢c)=o0c(u;-v.) ply=0]t,d)=1—-0c(u; ve) =0(—u; - ve)

Understanding SGNS

K
y = —log(a(u; - ve)) = 3 Ejupiu) log(o(—ue - v;))

=1

In skip-gram with negative sampling (SGNS), how many parameters need to be
updated in @ for every (t, ¢) pair?

(a) Kd

(b) 2Kd

(©) (K+ 1)d
(d) (K+2)d

Understanding SGNS

K
y=—log(o(u-ve)) — Y Ejupu)loglo(—u; - v;))

=1

In skip-gram with negative sampling (SGNS), how many parameters need to be
updated in @ for every (t, ¢) pair?

(a) Kd

(b) 2Kd

(c) (K+ 1)d The answer is (d).

(d) (K+2)d We need to calculate gradients with respect to U and (K + 1)

V; (one positive and K negatives).

Continuous Bag of Words (CBOW)

INPUT PROJECTION OUTPUT INPUT PROJECTION OUTPUT

T
w(t-2) w(t-2)

w(t-1)

w(t-1)
- \SUM
— w(t) 1

w(t)

\ Vt — § : v, =
wit+1) 2m - .
) —m<j<m,j#0
w(t+2)
w(t+2)
exXp (uwt Vi)
Skip-gram Continuous Bag of Words P (Wt | { Wi+j })

(CBOW) a > ke eXp(ug - Vi)

GloVe: Global Vectors

* Key idea: let's approximate U; - Vi using their co-occurrence counts directly

® Take the global co-occurrence statistics: Xi,j

J(Q) — Z f(Xz’]) (117; . Vj + bz -+ Bj — Iog Xz"j)z
i,JEV

® Training faster

10
e Scalable to very large corpora
08

f ~~ 6

04

02

00

(Pennington et al, 2014): GloVe: Global Vectors for Word Representation

Trained word embeddings available

e word2vec: https://code.google.com/archive/p/word2vec/

¢ GloVe: https://nlp.stanford.edu/projects/glove/

® FastText: https://fasttext.cc/

Download pre-trained word vectors

o Pre-trained word vectors. This data is made available under the Public Domain Dedication and License vi.0 whose full text can be found at:
'!'_LD;/"/'wwv.'.ouer‘datacorr!'nur‘5.9.’2,‘"]\(.‘&1585 ‘oddl/1.0/.
o Wikipedia 2014 + Gigaword 5 (6B tokens, 400K vocab, uncased, 50d, 1004, 200d, & 300d vectors, 822 MB download): glove.6B.zip
o Common Crawl (42B tokens, 19M vocab, uncased, 300d vectors, 175 GB download): glove.42B.3
o Common Crawl (840B tokens, 2.2M vocab, cased, 300d vectors, 203 GB download): glove.840B.300d.zip
o Twitter (2B tweets, 278 tokens, 1.2M vocab, uncased, 25d, 50d, 100d, & 200d vectors, 1.42 GB download): glove twitter.278.zip

« Ruby script for preprocessing Twitter data

Differ in algorithms, text corpora, dimensions, cased/uncased...
Applied to many other languages

Easy to use!

gensim.models KeyedVectors

model KeyedVectors.load_word2vec_format('data/GoogleGoogleNews—-vectors-negative300.bin', binary-True)

vector model['easy']

In [17]): model.similarity('straightforward', 'easy')
Out[17]: 0.5717043285477517
In [(18]: model.similarity('simple', 'impossible')

Out[l8]: 0.29156160264633707

In [19]): model.most_similar('simple')

Out[19]: [('straightforward', 0.7460169196128845),
('Simple’, 0.7108174562454224),
('uncomplicated’', 0.6297484636306763),
('simplest', 0.6171397566795349),

('easy’', 0.5990299582481384),

('fairly straightforward', 0.5893306732177734),
('deceptively simple', 0.5743066072463989),
('simpler', 0.5537199378013611),

('simplistic', 0.5516539216041565),
('disarmingly simple', 0.5365327000617981)]

Evaluating Word2vec

Extrinsic vs intrinsic evaluation

Extrinsic evaluation

® Let’s plug these word embeddings into a real NLP
system and see whether this improves performance

® Could take a long time but still the most important
evaluation metric

Intrinsic evaluation
e Evaluate on a specific/intermediate subtask
e Fast to compute

e Not clear if it really helps downstream tasks

(

:

[ML model }

0.31 0.01 1.87
-0.28 / \ -0.91 0.03

T
I don’t like

) () (%)
t t

this movie

Extrinsic evaluation

f

[ML model]
(52)(38) (62) () ()

I don’t like this movie

A straightforward solution: given an input sentence X1, X2, -« s Xn

Instead of using a bag-of-words model, we can compute vec(x) = e(x;) + e(x)) + ... + e(x,)

And then train a logistic regression classifier on VeC(X) as we did before!

There are much better ways to do this e.g., take word
embeddings as input of neural networks

Intrinsic evaluation: word similarity

Word similarity

Example dataset: wordsim-353
353 pairs of words with human judgement

http://www.cs.technion.ac.il/~gabr/resources/data/wordsim353/

Word 1 Word 2__Human (mean)

tiger cat 7.35 . e

_ _ Cosine similarity:

tiger tiger 10

book paper 7.46

computer internet 7.58 cos(ui, uj) = 7— — -
plane car 5.77 [z 12

professor doctor 6.62
stock phone 1.62
stock CcD 1231
stock jaguar 0.92

Metric: Spearman rank correlation

http://www.cs.technion.ac.il/~gabr/resources/data/wordsim353/

Intrinsic evaluation: word similarity

Model Size [WS353 MC RG SCWS RW
SVD 6B | 353 35.1 425 383 256
SVD-S 6B | 565 715 71.0 53.6 347
SVD-L 6B | 657 72.7 75.1 56.5 37.0
CBOW' 6B | 572 656 682 57.0 325
SG" 6B | 62.8 652 69.7 58.1 372
GloVe 6B | 65.8 72.7 71.8 539 38.1
SVD-L 42B| 740 764 74.1 583 399
GloVe 42B| 759 83.6 829 59.6 478
CBOW* 100B| 68.4 79.6 754 59.4 455

SG: Skip-gram

Intrinsic evaluation: word analogy

Word analogy test: a : a* :: b : b*

b* = arg max cos(e(w), e(a*) — e(a) + e(b))

semantic syntactic
Chicago:lllinois Philadelphia: ? bad:worst cool: ?

More examples at
http://download.tensorflow.org/data/questions-words. txt Metric: accuracy

http://download.tensorflow.org/data/questions-words.txt

Intrinsic evaluation: word analogy

Model Dim. Size | Sem. Syn. Tot.
ivLBL 100 1.5B | 559 50.1 532
HPCA 100 1.6B 42 164 108
GloVe 100 16B | 67.5 54.3 60.3
SG 300 1B | 61 61 61
CBOW 300 1.6B | 16.1 526 36.1
vLBL 300 15B | 542 64.8 60.0
ivLBL 300 1.5B 652 63.0 64.0
GloVe 300 1.6B 80.8 61.5 703
SVD 300 6B | 63 81 73
SVD-S 300 6B | 367 466 421
SVD-L 300 6B | 566 63.0 60.1
CBOW' 300 6B | 63.6 674 657
SG* 300 6B | 730 66.0 69.1
GloVe 300 6B | 774 67.0 717
CBOW 1000 6B | 573 689 637
SG 1000 6B | 66.1 651 65.6
SVD-L 300 42B | 384 582 492
GloVe 300 42B @ 819 69.3 75.0

Thanks

How to train word2vec?

How to train this model?

g
1 exXp(Uw, * Vi, ;)
J(@) = ~7 E E log *

T —m< im0 2okev eXP(Uuw, - Vi)

e To0 train such a model, we need to compute the vector gradient Vg J(@) =7

zfx2-2y:
Vaardvark

v(l
e Again, O represents all 2d | V | model
parameters, in one vector. :
A — zebra . -
Ugardvark
Uq

Uzebra | ? 2 ' :

Vectorized gradients

f(x)=x-a of _

= a
x,a € R" 0x

f=x1a1 +x209 + ...+ x0a,

of _of o of
ox ‘0xi Oxs’ 7 Oxy,

Vectorized gradients: exercises

%)
Let f = exp(W - X), what is the value of O_f? w,x € R”
X

(a) w

(b) exp(w - X)
(c) exp(w - X)W
(d) x

Vectorized gradients: exercises

7)
Let f = exp(W - X), what is the value of a—f? w,x € R”
X

(a) w
(b) exp(Ww - x) The answer is (c).
(c) exp(W - X)W

0 exp(Y,_, wx,) a
(d)x = =1 = exp(Z WX)W;
k=1

ox; 0X;

l

Let’'s compute gradients for word2vec

T
1 exp(Uw, * V)
J(0) = - E E log -

D1 _m<iamgro | 2okev SXP(Uw, - Vi)

Consider one pair of center/context words (t, C):

)= -log (B v)_)

Zkev eXP(ut : Vk)

We need to compute the gradient of with respect to

Ui and v, VK € V

Let’'s compute gradients for word2vec

exp(uy - v))

y = —log (
ZkeV eXp(ut : Vk)

y = —log(exp(u; - v¢)) + 1082(2 exp(u; - vi))
keV
= —W -V, + log(z exp(uy - vi))
keV

Let’'s compute gradients for word2vec

dy O(—ug-ve) n 9(log > ey exp(uy - vi))
exp(uy - ve)) ou; ouy duy

ZkEV eXp(ut) Vk) 0 ey exp(ug-ve)
@ut

> rev exp(ug - vy)

y=—log(

:—VC—|—

y = —log(exp(ut - v)) + 1082(2 exp(us - vi))
keV
= —uy - Vet log(z exp(ug - vi)) — —v.+
keV

Y okey exp(ug - vi) - vy
> key exp(ug - vi)

Let’'s compute gradients for word2vec

Oy _ O(—ug-ve) i 9(log 3 ey exp(uy - vi))

y = —log (exp(Us - Ve)) du, duy Juy

ZkEV eXp(ut) Vk) 0 ey exp(ug-ve)

ou;
Zkev exp(uy - Vi)

:—VC—|—

y = —log(exp(uy - v,)) + log(>~ exp(uy - vi))
keV
= —u; - V. + log(z exp(u - vi)) R > rev exp(ug - Vi) - vg
keV > ey exp(uy - vi)

Recall that

P(witj | we) =

Let’'s compute gradients for word2vec

Oy _ O(—ug-ve) i 9(log 3 ey exp(uy - vi))

y = —log (exp(Us - Ve)) du, duy Juy
ZkEV eXp(ut ' Vk) 0 ey exp(ug-ve)
ou;

T Sy ew(uy v
exp(uy - vy,
y = —log(exp(u; - v.)) + log(D exp(u; - v)) hev
EeV
= —u; -V, + log(z exp(ug - vi)) R Drev exp(Uy - Vi) - v
keV > ey exp(uy - vi)
= —V.+ Z exp(ut(~ Vi))vk
’ explug - Vs
Recall that kev Sewey PR TR
exp(uwt) th+j) = —V.+ P(k | t)vg
P(wiyj | wy) = >

Ove ral I al g O r|th m Convert the training data into:

into, problems)
into, turning)
into, banking)

(i
(i
(i
context size m ?nto crises)
(
(
(

®* Input: text corpus, embedding size d, vocabulary V banking, turning)

banking, into)
banking, crises)
banking, as)

Initialize U;, V; randomly Vi € V

[]
Run through the training corpus and for each training instance (t, c):

oy dy
_ —Z = —v.+ Pk |t)v
e Update U < uy —1n Juy ou, kie‘i/: (k[t)vi

Ay) Pt —Du k=c
_ VkeV Oy _ JPE[)-Duw c
* Update Vk Yk 77<9vk © Vi {P(k) ko

Ove ral I al g O r|th m Convert the training data into:

into, problems)
into, turning)
into, banking)

(i
(i
(i
context size m ?nto crises)
(
(
(

®* Input: text corpus, embedding size d, vocabulary V banking, turning)

banking, into)
banking, crises)
banking, as)

® Initialize Uj, V; randomly Vi € V

[]
Run through the training corpus and for each training instance (t, c):

d 9y _
° Update U < Uy — nali 871& = —V¢+ kEZ/PUﬂ ‘ t)vk:
a —_— —_ 3
e Update Vi Vg —n—-,Vk eV Oy _ JPE[)-Du k=c
ovy’ oV, Pk | t)u, k#c

Q: Can you think of any issues with this algorithm?

