
CSC6052/DDA6307/MDS6002:

Large Language Model

Lecture 3: Word Representation and Language Modeling

Spring 2024
Benyou Wang

School of Data Science

Recap

❖ What is linguistics?

❖ Linguistic structure

➢ Character

➢ Word

➢ Sentence

➢ Discourse (篇章)

❖ More about desturcture and scaling

➢ Inductive bias

➢ Inductive bias in NLP during many decades

➢ Rethinking Empiricism vs. Rationalism

❖ (Next) From linguistics to computing linguistics

How modern NN perceives structure

❏ Bag of words

❏ Word sequence

❏ Injected structure

❏ syntax or dependency tree(Recursive NN)

❏ with local connections (Convolution NN)

❏ with a recurrent bias (Recurrent NN)

Structure is learned in a data-driven way thanks to free attention.

Transformer： bag-of-words models with position embeddings

For NLP

● Building blocks
○ Words/subwords/tokens

● Building strategies
○ Neural network

○ Pre-trained objective

■ Language modeling

Side product

Part 1:
Understanding Words from the

perspective of Information retrieval

Application 1: How to find a book in library?

Application 2: How to search?

https://www.tripadvisor.com/Restaurants-g297415-c24-Shenzhen_Guangdong.html

Application 3：talk to your personal assistant

First, we need to know how to represent words

A simple practice: term matching

● Find books with AI in the title

Have the word or not?

Which book is more relevant?

Which one do you prefer if all book have “AI” in their titles

Vector Space Model:

Image from: http://en.wikipedia.org/wiki/Vector_space_model

Representation:

Documents and queries are represented as vectors in some space.

-- What are the dimensions?

-- How to map documents and queries to this space?

Scoring Function:

Rank documents by a measure of “closeness” of query and document

vectors

-- Distance, Cosine of the angle etc.

Vector Space Model: TF-IDF Model

Dimensions: Every word becomes a dimension.

Term Frequency:

A term that occurs many times in a document is important.

Inverse Document Frequency:

A term that occurs in many documents is unimportant.

TF-IDF:

Term-frequency weighted by inverse document frequency.

tf (t,D) = log 1+ #(t,D)()

idf (t) = log
N

Dt

æ

è
çç

ö

ø
÷÷

tfidf (t,D) = tf (t,D)´ idf (t)

D = <x1, x2,…, x|V|>

Vector Space Models: Enhancements

● Efficient scoring
○ Inverted indices – compression, skip lists, etc.

○ Top-k documents without scoring all documents entirely.

● Scoring methods
○ Document length normalizations (e.g., pivoted)

○ BM25 and various other heuristics

● Dimensionality reduction
○ Stemming, phrase representations etc.

○ LSI

Probabilistic Retrieval Models:

Language Modeling

P(w1|θD)

P(w2|θD)

…

P(w|V||θD)

Assume that each document is generated by a

probabilistic process specified by a multinomial

distribution.

If a document D is relevant to a query, then the query

should be a high probability sample from the document

multinomial.

Generative Assumption

Query-likelihood Model

Document model

parameterized by θ

Later termed as “uni-gram”

language model.

Probabilistic Retrieval Models:

Query-likelihood Model

P(Q |D) = P(q |qD)
qÎQ

Õ
P(q|Q)

Query

model

Document

model

Rank by the probability that the document model generated the query.

Probabilistic Retrieval Models:

Estimation

Zero probability issue!

qD(w) =
#(w,D)

#(wi,D)
wiÎD

å

Estimate document model via maximum-likelihood

-- Assume document is a sample of the underlying distribution.

Latent Semantic Analysis

Premise
Using one-dimension per word is problematic.

Doesn’t scale.
(millions of words in large collections)

Doesn’t handle synonymy
(dog vs. canine)

Idea
Project documents and queries into a lower-dimensional space.
Instead of a |V| dimensional vector each word will be represented by a
k << |V| dimensional vector.

Latent Semantic Analysis

Figures stolen from: http://www.cs.cmu.edu/~nasmith/LS2/gimpel.06.pdf

1) Represent co-occurrences as a term-document TD

matrix (X).

2) Use singular-value decomposition to factorize TD.

4) Project query and documents using the top-k singular values.

3) Sigma is a diagonal matrix. Take the top k singular values.

5) Cosine similarity to score documents.

A bigger difference

𝑉𝑇 𝑖𝑚𝑝𝑙𝑖𝑒𝑠 a set word vectors, later we will explain it.

It does not rely on term match;

Even two documents could be relevant even they do not share any common words

Latent Semantic Analysis

● Benefits
○ Addresses synonymy

○ Dimensionality reduction

● Issues
○ Efficient SVD implementations necessary.

■ Many implementations available.

○ New documents need to be handled in a special way.

○ Disconnect w/ retrieval performance.

○ Rely on direct counting

● Extensions
○ Probabilistic Latent Semantic Analysis (pre-cursor to LDA).

○ Hierarchical (H-PLSA)

Topic Models using LDA

Documents
LDA

Car

Ferrari

Wheels

…

election

vote

senate

…

nasdaq

rate

stocks

…

…

- - - - - - -
- - - - - - -
- - - -
- - - - - - -
- - - - - - -
- - - -

…

T2 TkT1

P(T1|D1

)

P(T2|D1

)

…

P(Tk|D1

)
- - - - - - -
- -
- - - - - - -
- - - - - - -
- - - -
- - - - - - -
- -

P(T1|D2

)

P(T2|D2

)

…

P(Tk|Dk)

D1

D2

P(w1|T1)

P(w2|T1)

…

P(w|V||T1)

P(w1|T2)

P(w2|T2)

…

P(w|V||T2)

P(w1|Tk)

P(w2|Tk)

…

P(w|V||Tk)

…

Topics are distributions over words.

Documents are distributions over topics.

Part 2:

Statistical language models

to neural language models

Background

● language model

Liu et al., Representation Learning for Natural Language Processing, Springer, 2020

What is language modeling?

A language model assigns a probability to a N-gram
𝑓: 𝑉𝑛 → 𝑅+

What is language modeling?

A language model assigns a probability to a N-gram
𝑓: 𝑉𝑛 → 𝑅+

Sfklkljf fskjhfkjsh kjfs fs kjhkjhs fsjhfkshkjfh

ChatGPT is all you need

Low probability

high probability

What is language modeling?

A language model assigns a probability to a N-gram
𝑓: 𝑉𝑛 → 𝑅+

A conditional language model assigns a probability of a word given some conditioning context

𝑔: (𝑉𝑛−1 , 𝑉) → 𝑅+

And 𝒑 𝒘𝒏 𝒘𝟏 ⋯𝒘𝒏−𝟏) = 𝑔(𝑤1 ⋯𝑤𝑛−1, 𝑤) =
𝑓(𝑤1⋯𝑤𝑛)

𝑓(𝑤1⋯𝑤𝑛−1)

What is language modeling?

A language model assigns a probability to a N-gram
𝑓: 𝑉𝑛 → 𝑅+

A conditional language model assigns a probability of a word given some conditioning context

𝑔: (𝑉𝑛−1 , 𝑉) → 𝑅+

And 𝒑 𝒘𝒏 𝒘𝟏 ⋯𝒘𝒏−𝟏) = 𝑔(𝑤1 ⋯𝑤𝑛−1, 𝑤) =
𝑓(𝑤1⋯𝑤𝑛)

𝑓(𝑤1⋯𝑤𝑛−1)

𝒑 𝒘𝒏 𝒘𝟏 ⋯𝒘𝒏−𝟏) is the foundation of modern large language models (GPT, ChatGPT, etc.)

Language model using neural networks

我 思 故 我

在

input：

output：

Back-box neural networks：
GPT-3/ChatGPT/GPT4 have
175B+ parameters
Humans have 100B+
neurons

Recap:

Basic Probability Theory

P() = 2/15

P(blue) = 5/15

P(blue |) = 2/5

P(red)

P() = 1/15

= 5/15

P() = 5/15

P(or) = 2/15

P(|red) = 3/5

Pick a random shape, then put it back in the bag.

Sampling with replacement

Pick a random shape, then put it back in the bag.

What sequence of shapes will you draw?

P()
= 1/15 ×1/15 ×1/15 ×2/15

= 2/50625

P()
= 3/15 ×2/15 ×2/15 ×3/15

= 36/50625

P() = 2/15

P(blue) = 5/15

P(blue |) = 2/5

P(red)

P() = 1/15

= 5/15

P() = 5/15

P(or) = 2/15

P(|red) = 3/5

Sampling with replacement

P(of) = 3/66

P(Alice) = 2/66

P(was) = 2/66

P(to) = 2/66

P(her) = 2/66

P(sister) = 2/66

P(,) = 4/66

P(') = 4/66

Sampling with replacement
Alice was beginning to get very tired of

sitting by her sister on the bank, and of

having nothing to do: once or twice she

had peeped into the book her sister was

reading, but it had no pictures or

conversations in it, 'and what is the use

of a book,' thought Alice 'without

pictures or conversation?'

P(of) = 3/66

P(Alice) = 2/66

P(was) = 2/66

P(to) = 2/66

P(her) = 2/66

P(sister) = 2/66

P(,) = 4/66

P(') = 4/66

In this model, P(English sentence) = P(word salad)

Sampling with replacement
beginning by, very Alice but was and?

reading no tired of to into sitting

sister the, bank, and thought of without

her nothing: having conversations Alice

once do or on she it get the book her had

peeped was conversation it pictures or

sister in, 'what is the use had twice of

a book''pictures or' to

Probability theory: terminology

Trial (aka “experiment”)
Picking a shape, predicting a word

Sample space Ω:

The set of all possible outcomes

(all shapes; all words in Alice in Wonderland)

Event ω ⊆ Ω:

An actual outcome (a subset of Ω)

(predicting ‘the’, picking a triangle)

Random variable X: Ω → T

A function from the sample space (often the identity function)

Provides a ‘measurement of interest’ from a trial/experiment

(Did we pick ‘Alice’/a noun/a word starting with “x”/…?)

3) And the probability of all disjoint events sums to 1.

What is a probability distribution?

P(ω) defines a distribution over Ω iff

1) Every event ω has a probability P(ω) between 0 and 1:

0 ≤ P (ω ⊆ Ω) ≤ 1

2) The null event ∅ has probability P(⊘) = 0:

P (⊘) = 0

The conditional probability of X given Y, P(X | Y),

is defined in terms of the probability of Y, P(Y),

and the joint probability of X and Y, P(X,Y):

Joint and Conditional Probability

P (X |Y) =
P (X, Y)

P (Y)

P(blue |) = 2/5

The chain rule

The joint probability P(X,Y) can also be expressed in

terms of the conditional probability P(X | Y)

P (X, Y) = P (X|Y)P (Y)

This leads to the so-called chain rule

Independence

Two random variables X and Y are independent if

P (X, Y) = P (X) P (Y)

If X and Y are independent, then P(X | Y) = P(X):

P (X |Y) =
P (X, Y)

P (Y)

P (X) P (Y)

P (Y)
(X ,Y independent)=

= P (X)

Probability models

Building a probability model consists of two steps:

1. Defining the model
2. Estimating the model’s parameters

(= training/learning)

Models (almost) always make

independence assumptions.
That is, even though X and Y are not actually independent,

our model may treat them as independent.

This reduces the number of model parameters that

we need to estimate (e.g. from n2 to 2n)

language modeling

What is a language model?

• A probabilistic model of a sequence of words

• Joint probability distribution of words w1, w2, …, wn:

P(w1, w2, w3, ..., wn)

How likely is a given

phrase, sentence,

paragraph or even a

document?

Chain rule

Conditional probability:

p(w ∣ w1, w2), ∀w ∈
V

p(w1)p(w2 | w1)p(w3| w1, w2) ⇥ ···⇥ p(wn | w1, w2, . . . , wn—1)

Sentence: “the cat sat on the mat”

P(the cat sat on the mat) = P(the) ⇤ P(cat|the) ⇤ P(sat|the cat)

⇤P(on|the cat sat) ⇤ P(the|the cat sat on)

⇤P(mat|the cat sat on the)

Implicit order

p(w1, w2, w3, . . . , wn) =

Language models: Narrow Sense

A probabilistic model that assigns a probability to every finite sequence (grammatical or not)

GPT-3 still acts in this way but the model is implemented as a very large neural network of

175-billion parameters!

Language models:Broad Sense

❖ Decoder-only models (GPT-x models)

❖ Encoder-only models (BERT, RoBERTa, ELECTRA)

❖ Encoder-decoder models (T5, BART)
The latter two usually involve a

different pre-training objective.

Language models are everywhere

Estimating probabilities

Assume we have a vocabulary of size V

how many sequences of length n do we have?

P(sat|the cat) =
count(the cat sat)

count(the cat)

count(the cat sat on)
P(on|the cat sat) =

count(the cat sat)

trigram

bigram

Maximum

likelihood

estimate

(MLE)

Estimating probabilities

• With a vocabulary of size V, # sequences of length

• Typical English vocabulary ~ 40k words

• Even sentences of length <= 11 results in more than 4 * 10^50 sequences.

Too many to count! (# of atoms in the earth ~ 10^50)

P(sat|the cat) =
count(the cat sat)

count(the cat)

count(the cat sat on)
P(on|the cat sat) =

count(the cat sat)

Maximum

likelihood

estimate

(MLE)

Markov assumption

• Use only the recent past to predict the next word

• Reduces the number of estimated parameters in exchange for modeling

capacity

• 1st order

P(mat|the cat sat on the) ⇡ P(mat|the)

• 2nd order

P(mat|the cat sat on the) ⇡ P(mat|on the)

Andrey Markov

kth order Markov

Consider only the last k words (or less) for context

which implies the probability of a sequence is:

Need to estimate counts for up to (k+1) grams

(assume wj = ϕ ∀j < 0)

n-gram models

and Trigram, 4-gram, and so on.

Larger the n, more accurate and better the language model

(but also higher costs)

Caveat: Assuming infinite data!

Unigram

Bigram

e.g. P(the) P(cat) P(sat)

e.g. P(the) P(cat | the) P(sat | cat)

Generation using a language model

Generating from a language model

• Given a language model, how to generate a sequence?

Bigram

• Generate the first word w1 ∼ P(w)

• Generate the second word w2 ∼ P(w ∣ w1)

• Generate the third word w3 ∼ P(w ∣ w2)
• …

Generating from a language model

Trigram

•

•

•

•

Generate the first word w1 ∼ P(w)

Generate the second word w2 ∼ P(w ∣ w1)

Generate the third word w3 ∼ P(w ∣ w1, w2)

Generate the fourth word w4 ∼ P(w ∣ w2, w3)

• …

• Given a language model, how to generate a sequence?

Generations

release millions See ABC accurate President of Donald Will

cheat them a CNN megynkelly experience @ these word

out- the

Unigram

Thank you believe that @ ABC news, Mississippi tonight

and the false editorial I think the great people Bill Clinton

. ''

Bigram

We are going to MAKE AMERICA GREAT AGAIN!

#MakeAmericaGreatAgain https: //t.co/DjkdAzT3WV
Trigram

Typical LMs are not sufficient to handle long-range dependencies

“Alice/Bob could not go to work that day because

she/he had a doctor’s appointment”

Generations

With the start of the new academic year, Princeton has an opportunity to help provide a new

generation of women with a diverse set of academic resources for higher education.

We are offering the resources of the Princeton-McGill program specifically to women with undergraduate

degrees who would like to enhance their academic experience. Princeton-McGill offers a comprehensive

suite of services for women and their families including a variety of graduate programs, support programs,

and the opportunity to serve as leaders in their communities with a wide variety of programs, activities

and services. For the upcoming fall, Princeton-McGill will also offer its Women's Center , which is located

in a renovated women's dorm.

At Princeton, we are working with the Princeton-McGill community to develop a suite of programs that are

designed to give new and returning students a strong foundation for a successful, rewarding graduate

career. The Women's Center , the Princeton-McGill Women's Center provides a range of supports to

address the specific needs of female doctoral degree graduates. Programs are tailored to meet the unique

needs of women under the age of 28, women and families

https://talktotransformer.com/

Example from a GPT-2 output: prompt aka. conditional generation

Generation methods (advanced)

• Greedy: choose the most likely word!

To predict the next word given a context of two words w1, w2:

w3 = arg max P(w | w1, w2)
w∈V

• Top-k vs top-p sampling:

Top-k sampling Top-p sampling

https://blog.allenai.org/a-guide-to-language-model-sampling-in-allennlp-3b1239274bc3

Evaluating a language model (perplexity)

Extrinsic evaluation

•

refine

Train LM apply to task observe accuracy

• Directly optimized for downstream applications

• higher task accuracy better model

• Expensive, time consuming

• Hard to optimize downstream objective (indirect feedback)

Language

model

Machine

Translation Eval

Intrinsic evaluation of language models

Research process:

• Train parameters on a suitable training corpus

• Assumption: observed sentences ~ good sentences

• Test on different, unseen corpus

• If a language model assigns a higher probability to the

test set, it is better

• Evaluation metric - perplexity!

Perplexity (ppl)

•

•

Measure of how well a LM predicts the next word

For a test corpus with words w1, w2, . . . wn

Perplexity = P(w1, w2, . . . , wn)—1/n

•

• Minimizing perplexity ~ maximizing probability of corpus

Intuition on perplexity

If our k-gram model (with vocabulary V) has following probability:

what is the perplexity of the test corpus?

P(w | wi−k, . . . wi−1) =
1

| V |
∀w ∈ V

Intuition on perplexity

P(w | wi−k, . . . wi−1) =
1

| V |

Measure of model’s uncertainty about next word (aka `average branching factor’)

branching factor = # of possible words following any word

∀w ∈ V

If our k-gram model (with vocabulary V) has following probability:

what is the perplexity of the test corpus?

Perplexity

GPT-3 175B:

ppl = 20.5

https://paperswithcode.com/sota/language-modelling-on-penn-treebank-word

Smoothing in language modeling

Generalization of n-grams
Any problems with n-gram models and their evaluation?

• Not all n-grams in the test set will be observed in training data

• Test corpus might have some that have zero probability under our model

• Training set: Google news

• Test set: Shakespeare

• P(affray | voice doth us) = 0 ⟹ P(test corpus) = 0

• Perplexity is not defined.

Sparsity in language

F
re

q
u
e
n
c
y

Rank

• Long tail of infrequent words

• Most finite-size corpora will have this problem.

Zipf’s Law

freq
1

rank

Smoothing

• Handle sparsity by making sure all probabilities are non-zero in our model

• Additive: Add a small amount to all probabilities

• Interpolation: Use a combination of different granularities of n-grams

• Discounting: Redistribute probability mass from observed n-grams to

unobserved ones

Smoothing intuition
When we have sparse statistics:

P(w | denied the)

3 allegations

2 reports

1 claims

1 request

7 total

Steal probability mass to generalize better

P(w | denied the)

2.5 allegations

1.5 reports

0.5 claims

0.5 request

2 other

7 total
a
l
l
e
g

a
t
io

n
s

r
e
p

o
r
t
s

c
l
a
i
m

s

r
e
q
u
e
s
t

a
tt
a
c
k

m
a
n

o
u
tc

o
m

e

…

a
l
l
e
g

a
t
i
o
n

s

a
tt
a
c
k

m
a
n

o
u
tc

o
m

e

…

a
l
l
e
g

a
t
io

n
s

r
e
p

o
r
t
s

c
l
a
i
m

s

r
e
q

u
e
s
t

(Slide credit: Dan Klein)

Laplace smoothing

•

• Also known as add-alpha

Simplest form of smoothing: Just add to all counts and renormalize!

• Max likelihood estimate for bigrams:

• After smoothing:

Raw bigram counts

(Berkeley restaurant corpus)

• Out of 9222 sentences

(Slide credit: Dan Jurafsky)

Smoothed bigram counts

Add 1 to all the entries in the matrix

(Slide credit: Dan Jurafsky)

Smoothed bigram probabilities

(Credits: Dan Jurafsky)

Linear Interpolation

• Use a combination of models to estimate probability

• Strong empirical performance

How can we choose lambdas?

• First, estimate n-gram prob. on training set

• Then, estimate lambdas (hyperparameters) to maximize

probability on the held-out development/validation set

• Use best model from above to evaluate on test set

Text corpus

Train
Development/

Validation
Test

Discounting

• Determine some “mass” to remove from probability estimates

• More explicit method for redistributing mass among unseen n-grams

• Just choose an absolute value to discount (usually <1)

Absolute Discounting

• Define Count*(x) = Count(x) - 0.5

• Missing probability mass:

• Divide this mass between words

for which Count(the,) = 0

Part 3:
Word representation in modern NLP

The big idea: model of meaning focusing on similarity

Similar words are “nearby

in the vector space”

(Bandyopadhyay et al. 2022)

How do we represent words in NLP models?

• n-gram models

• Naive Bayes

Each word is just a string

or indices wi in the

vocabulary list

cat = the 5th word in

dog = the 10th word in

cats = the 118th word in

string match

• Logistic regression

How do we represent words in NLP models?

• Synonyms: couch/sofa, car/automobile, filbert/hazelnut

• Antonyms: dark/light, rise/fall, up/down

• Some words are not synonyms but they share some

element of meaning

• cat/dog, car/bicycle, cow/horse

• Some words are not similar but they are related

• coffee/cup, house/door, chef/menu

• Affective meanings or connotations:

What do words mean?

SimLex-999

(Osgood et al., 1957)

Why word meaning in NLP models?

• With words, a feature is a word identity (= string)

• Feature 5: `The previous word was “terrible”’

• Requires exact same word to be in the training and testing set

“terrible” ≠ “horrible”

• If we can represent word meaning in vectors:

• The previous word was vector [35, 22, 17, …]

• Now in the test set we might see a similar vector [34, 21, 14, …]

• We can generalize to similar but unseen words!!!

Lexical resources

http://wordnetweb.princeton.ed

u/

(-) Huge amounts of human

labor to create and maintain

http://wordnetweb.princeton.edu/

Distributional hypothesis

Distributional hypothesis

• “The meaning of a word is its use in the language”

• “If A and B have almost identical environments we

say that they are synonyms.”

• “You shall know a word by the company it keeps”

[Wittgenstein PI 43]

[Harris 1954]

[Firth 1957]

Distributional hypothesis

Distributional hypothesis: words that occur in similar contexts

tend to have similar meanings

J.R.Firth 1957

•

•

“You shall know a word by the company it keeps”

One of the most successful ideas of modern

statistical NLP!

These context words will represent “banking”.

When a word w appears in a text, its context is the set of words that appear

nearby (within a fixed-size window).

Distributional hypothesis

Ongchoi is delicious sautéed with garlic

Ongchoi is superb over rice

Ongchoi leaves with salty sauces

“Ongchoi”

Distributional hypothesis

Q: What do you think ‘Ongchoi’

means?

A) a savory snack

B) a green vegetable

C) an alcoholic beverage

D) a cooking sauce

Ongchoi is delicious sautéed with garlic

Ongchoi is superb over rice

Ongchoi leaves with salty sauces

“Ongchoi”

Distributional hypothesis

“Ongchoi”

Ongchoi is delicious sautéed with garlic

Ongchoi is superb over rice

Ongchoi leaves with salty sauces

You may have seen these

sentences before:

spinach sautéed with garlic over rice

chard stems and leaves are delicious

collard greens and other salty leafty

greens

Distributional hypothesis

“Ongchoi”

Ongchoi is a leafty green like spinach, chard or collard

greens

How can do the same thing computationally?

•

•

Count the words in the context of ongchoi

See what other words occur in those contexts

We can represent a word’s context using vectors!

Sparse vs dense vectors

Words and vectors

First solution: Let’s use word-word co-occurrence counts to

represent the meaning of words!

Each word is represented by the corresponding row vector

context words:

4 words to the left +

4 words to the right

Q: What is the

dimension of each

such vector?

A: |V|

Most entries are 0s ⟹ sparse vectors

Measuring similarity

Q: Why cosine similarity instead of dot product ?

A common similarity metric: cosine of the

angle between the two vectors (the

larger, the more similar the two vectors

are)

What is the range of cos(u, v) if u, v are count vectors?

What is the range of cos(u, v) if u, v are count vectors?

The answer is (b). Cosine similarity ranges between -1 and 1 in general. In this model,

all the values of are non-negative.

Any issues with this model?

Raw frequency count is a bad representation!

• Frequency is clearly useful; if “pie” appears a lot near “cherry”,

that's useful information.

• But overly frequent words like “the”, “it", or “they” also appear a lot

near “cherry”. They are not very informative about the context.

Sparse vs dense vectors

• The vectors in the word-word occurrence matrix are

• Long: vocabulary size

• Sparse: most are 0’s

• Alternative: we want to represent words as short (50-300 dimensional) & dense (real-

valued) vectors

• The basis for modern NLP systems

Why dense vectors?

• Short vectors are easier to use as features in ML systems

• Dense vectors generalize better than explicit counts (points in real

space vs points in integer space)

• Sparse vectors can’t capture higher-order co-occurrence

• w1 co-occurs with “car”, w2 co-occurs with “automobile”

• They should be similar but they aren’t because “car” and

“automobile” are distinct dimensions

• In practice, they work better!

How to get short dense vectors?

• Count-based methods: Singular

value decomposition (SVD) of count

matrix

Singular value decomposition (SVD) of

PPMI weighted co-occurrence matrix

We can approximate the full

matrix by only keeping the

top k (e.g., 100) singular

values!

How to get short dense vectors?

• Prediction-based methods:

• Vectors are created by training a classifier

to predict whether a word c (“pie”) is likely

to appear in the context of a word w

(“cherry”)

• Examples: word2vec (Mikolov et al.,

2013), Glove (Pennington et al., 2014),

FastText (Bojanowski et al., 2017)
(Baroni et al., 2014)

Also called word embeddings!

• Count-based methods: Singular value

decomposition (SVD) of count matrix

Part 4:
Word2vec

Word embeddings

Count-based approaches

• Used since the 90s

• Sparse word-word co-occurrence PPMI matrix

• Decomposed with SVD

Prediction-based approaches

• Formulated as a machine learning problem

• Word2vec (Mikolov et al., 2013)

• GloVe (Pennington et al., 2014)

Underlying theory: Distributional Hypothesis (Firth, '57)

“Similar words occur in similar contexts”

Goal: represent words as short (50-300

dimensional) & dense (real-valued) vectors

Word embeddings: the learning problem

Learning vectors from text for representing words

• Input: a large text corpus, vocabulary V,

vector dimension d (e.g., 300)

• Output:

Each coordinate/dimension of the

vector doesn’t have a particular

interpretation

Word embeddings

• Basic property: similar words have similar vectors

word w*= “sweden”

cos(u, v) ranges between -1 and 1

Word embeddings

• They have some other nice properties too!

ACL’19

Word embeddings

• They have some other nice properties too!

(Mikolov et al, 2013): Exploiting Similarities among Languages for Machine

Translation

Embeddings as a window onto historical semantics

Train embeddings on different decades of historical text to see meanings shift

Embeddings reflect cultural bias!

word2vec

•

•

(Mikolov et al 2013a): Efficient Estimation of Word Representations in Vector Space

(Mikolov et al 2013b): Distributed Representations of Words and Phrases and their Compositionality

Skip-gramContinuous Bag of Words

(CBOW)

Thomas

Mikolov

Skip-gram

A classification

problem!

•

•

•

Assume that we have a large corpus w1, w2, …, wT ∈ V

P(b ∣ a) = given the center word is

a, what is the probability that b is a

context word?

P(⋅ ∣ a) is a probability distribution

defined over V:

Context: a fixed window of size 2m (m = 2 in the example)

Key idea: Use each word to predict other words in its context

We are going to define

this distribution soon!

Our goal is to find parameters that can maximize

Convert the training data into:

(into, problems)

(into, turning)

(into, banking)

(into, crises)

(banking, turning)

(banking, into)

(banking, crises)

(banking, as)

…

Skip-gram

P(turning ∣ banking) ×P(into ∣ banking) ×P(crises ∣ banking) ×P(as ∣ banking)…P(problems ∣ into) ×P(turning ∣ into) × P(banking ∣ into) ×P(crises ∣ into) ×

Skip-gram: objective function

• For each position t = 1,2,…T, predict context words within context size m,

given center word wt:

• It is equivalent as minimizing the (average) negative log likelihood:

How to define P(wt+j ∣ wt; θ)?

• Use two sets of vectors for each word in the vocabulary

ua ∈ ℝd: vector for center word a

vb ∈ ℝd: vector for context word b

, ∀a ∈ V

, ∀b ∈ V

• Use inner product ua ⋅ vb to measure how likely word a appears with context word b

Recall that P(⋅ ∣ a) is a probability

distribution defined over V…

… vs multinominal logistic regression

•

•

Essentially a |V|-way classification problem

If we fix , it is reduced to a multinomial

logistic regression problem.

• However, since we have to learn both and

together, the training objective is non-convex.

P(y = c | x) =
exp(wc ⋅ x + bc)

∑
m

j=1
exp(wj ⋅ x + bj)

Multinomial logistic

regression:

… vs multinominal logistic regression

• It is hard to find a global minimum

• But can still use stochastic gradient descent to optimize

:

Important note

• In this formulation, we don’t care about the classification task itself like we do for

the logistic regression model we saw previously.

• The key point is that the parameters used to optimize this training objective—

when the training corpus is large enough—can give us very good representations

of words (following the principle of distributional hypothesis)!

How many parameters in this model?

How many parameters does this model have (i.e. what is size of)?

(a) d|V|

(b) 2d|V|

(c) 2m|V|

(d) 2md|V|

d = dimension of each vector

How many parameters in this model?

How many parameters does this model have (i.e. what is size of)?

(a) d|V|

(b) 2d|V|

(c) 2m|V|

(d) 2md|V|

d = dimension of each vector

The answer is (b).

Each word has two d-dimensional vectors, so it is 2 × | V | × d.

word2vec formulation

Q: Why do we need two vectors for each word instead of one?

A: because one word is not likely to appear in its own context window, e.g.,

P(dog ∣ dog) should be low. If we use one set of vectors only,

it essentially needs to minimize udog⋅ udog..

Q: Which set of vectors are used as word embeddings?

A: This is an empirical question. Typically just uw but you can also

concatenate the two vectors..

Word2vec and its variants

Skip-gram with negative sampling (SGNS)

Problem: every time you get one pair of (t, c), you need to update vk with all the

words in the vocabulary! This is very expensive computationally.

Negative sampling: instead of considering all the words in V, let’s randomly sample K

(5-20) negative examples.

softmax:

Negative sampling:

σ(x) =
1

1 + exp(—x)

Skip-gram with negative sampling (SGNS)

Key idea: Convert the |V| -way classification into a set of binary classification tasks.

Every time we get a pair of words (t, c), we don’t predict c among all the words in the

vocabulary. Instead, we predict (t, c) is a positive pair, and (t, c’) is a negative pair for a

small number of sampled c’.

Similar to binary logistic regression, but we need to optimize and together.

P(w): sampling according to the frequency of words

Understanding SGNS

Understanding SGNS

The answer is (d).

We need to calculate gradients with respect to ut and (K + 1)

vi (one positive and K negatives).

Continuous Bag of Words (CBOW)

Skip-gram Continuous Bag of Words

(CBOW)

GloVe: Global Vectors

(Pennington et al, 2014): GloVe: Global Vectors for Word Representation

•

•

Key idea: let’s approximate ui ⋅ vj using their co-occurrence counts directly

Take the global co-occurrence statistics: Xi,j

•

•

Training faster

Scalable to very large corpora

Trained word embeddings available

• word2vec: https://code.google.com/archive/p/word2vec/

• GloVe: https://nlp.stanford.edu/projects/glove/

• FastText: https://fasttext.cc/

Differ in algorithms, text corpora, dimensions, cased/uncased…

Applied to many other languages

Easy to use!

Evaluating Word2vec

Extrinsic evaluation

• Let’s plug these word embeddings into a real NLP

system and see whether this improves performance

• Could take a long time but still the most important

evaluation metric

Extrinsic vs intrinsic evaluation

Intrinsic evaluation

•

•

•

Evaluate on a specific/intermediate subtask

Fast to compute

Not clear if it really helps downstream tasks

Extrinsic evaluation

A straightforward solution: given an input sentence

Instead of using a bag-of-words model, we can compute vec(x) = e(x1) + e(x2) + .. . + e(xn)

And then train a logistic regression classifier on vec(x) as we did before!

There are much better ways to do this e.g., take word

embeddings as input of neural networks

x1, x2, . . . , xn

Intrinsic evaluation: word similarity

Word similarity

Example dataset: wordsim-353

353 pairs of words with human judgement

http://www.cs.technion.ac.il/~gabr/resources/data/wordsim353/

Cosine similarity:

Metric: Spearman rank correlation

http://www.cs.technion.ac.il/~gabr/resources/data/wordsim353/

SG: Skip-gram

Intrinsic evaluation: word similarity

Intrinsic evaluation: word analogy

semantic

Chicago:Illinois Philadelphia: ? bad:worst cool: ?

syntactic

More examples at

http://download.tensorflow.org/data/questions-words.txt Metric: accuracy

Word analogy test: a : a* :: b : b*

http://download.tensorflow.org/data/questions-words.txt

Intrinsic evaluation: word analogy

Thanks

How to train word2vec?

How to train this model?

• To train such a model, we need to compute the vector gradient

• Again,

parameters, in one vector.

represents all 2d | V | model

Vectorized gradients

Vectorized gradients: exercises

Vectorized gradients: exercises

Let’s compute gradients for word2vec

Consider one pair of center/context words (t, c):

We need to compute the gradient of with respect to

ut and vk, ∀k ∈ V

Let’s compute gradients for word2vec

Let’s compute gradients for word2vec

Let’s compute gradients for word2vec

Let’s compute gradients for word2vec

Overall algorithm

•

•

•

, context size m

Run through the training corpus and for each training instance (t, c):

Input: text corpus, embedding size d, vocabulary V

Initialize ui, vi randomly ∀i ∈ V

Overall algorithm

•

•

•

, context size m

Run through the training corpus and for each training instance (t, c):

Input: text corpus, embedding size d, vocabulary V

Initialize ui, vi randomly ∀i ∈ V

Q: Can you think of any issues with this algorithm?

